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Econometrica, Vol. 49, Na. 6 (Navember, 1981)

BIASES IN DYNAMIC MODELS WITH FIXED EFFECTS

By STEPHEN NickerL!'

It is well known from the Monte-Carlo wark of Nerlove that using the standard
within-group estimator for dynamic models with fixed individual effects generates esti-
mates which are inconsistent as the number of “individuals” tends to infinity if the number
of time periods is kept fixed. [n this paper we present analytical expressions for these
inconsistencies for the first order autoregressive case.

INTRODUCTION

SINCE THE PIONEERING WORK of Balestra and Nerlove [2] on the demand for
natural gas, economists have made extensive use of panel data in the elucidation
of economic relationships. In this work it has been typically assumed that the
error term corresponding to the ith individual in the rth time period, u,, is made
up of three components, one individual specific, one time specific, and a
remainder which is both time and individual specific. Thus we have

(l) uir = Jﬂ + J""r + €r’r

where the three components are often assumed to be uncorrelated with each
ather and, indeed, with the included variables in the equation. The fundamental
question was generally considered to be, in the words of Nerlove, “whether or
not to treat f; and p, as parameters or as random variables.” This is particularly
important in the case of f, because the typical panel has vastly more individuals
than time periods and treating the f; as parameters introduces an enormous
number of additional parameters into the model compared with the alternative in
which the f; are usually considered as being drawn from a distribution with but a
single unknown parameter. The advantages of this latter so called random effects
model over the alternative fixed effects model are thus manifest particularly
when it is realized that the fixed effects model implies that one is ruling out of
order all the information that may be gleaned by directly comparing one
individual with another.

However, in recent years, the error components model has been looked at from
a slightly different viewpoint by some researchers who view the individual effects,
fi, as relevant but uncbserved characteristics which are highly likely to be
correlated with the observed exogenous variables in the model. Thus, for exam-
ple, in Ashenfelter’s study of the effect of training programs on earnings the
individual effects are talked of as capturing “such factors as ability, motivation
or other previous investments in human capital™ which are clearly thought of as

'T should Tike to thank Jim Heckman for encouraging me to write this paper and John Ham,
David Hendry, two referees of Ecenometrica, and members of the econometrics group at the London
School of Economics for their useful comments on an earlier draft. Financial support was provided
by the Industrial Relations Section, Princeton University, and the Social Science Research Council.

I5ee Nerlove [13, p. 361].

ISee Ashenfelter [I, p. 49}
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being correlated with the extent to which the individual participates in training
programs. Hausman {4] takes a similar view in his brief discussion of wage
equations in which he finds strong evidence that the individual effects are
correlated with the observed exogenous variables and uncompromisingly rejects
the uncortelated random effects model. This is very important point because if
one takes the view that, in any particular model, the individual effects are likely
to be correlated with all the observed exogenous variables, then one is lead
inexorably to the fixed effects model.* This will enable one to obtain coefficients
on the exogenous variables which do not suffer from bias due to the omission of
relevant individual attributes. Indeed, Mundlak [11] and Chamberlin [3] have
shown, in the context of linear regression with strictly exogenous regressors, that
the random effects model leads to the same estimators as the fixed effects model
in situations where the individual effects are correlated with the exogenous
variables and thus, in these hardly unusual circumstances, the fixed effects madel
assumes paramount importance.”®

Unfortunately, as the Monte-Carlo work of Nerlove [12, 13] makes clear, the
fixed effects model suffers from an important drawback. Standard methods of
estimation are liable to lead to seriously biased coefficients in dynamic models. A
typical set of panel data has a rather large number of individuals and a rather
small number of time periods and it is in just these circumstances that the biases,
which are essentially of the Hurwicz type, are most serious.® The fact that they
will go to zero when the number of time periods becomes infinite is scant
consolation. It is the purpose of this paper to investigate these biases analytically
for the first-order autoregressive case. Two models will be considered. These are,
omitting the time effects for simplicity of exposition,

) V=B oveo 1 T2 Bxytfite, (i=1.. . N;t=1...T)
/
and
&) Vi =B+ 2 Bxpt fi+ oy, (i=1...N;r=1...T),
-
(4) = pu, + ;-

*A superior alternative to the fixed effects or within-groups estimator is available if one is
prepared to assert, a priovi, that some of the included exogenous variables are not correlated with the
individual effects. This is discussed in Hausman and Taylor (5].

5[t is, of course, always open to the investigator to take a random effects model and specify a joint
distribution, for the random effects and the included variables and then to integrate the former out of
the likelihood function. This general procedure is discussed in Chamberlin (3] and an illustration of
problems it can cause in a particular context is presented in Lancaster and Nickell [8]. The basic
difficulty is, of course, that the estimates obtained often depend crucially on the distributional
assumnptions made about the individual effects, something on which economic theory has little o say.
Unfartunately, 4s soon as one moves outside the framework of linear regression with strictly
exogenous regressors, the fixed effects model {with its distribution-free advantages) generates incon-
sistent estimates for fixed T. Heckman [6] presents some Monte Carlo estimates on the size of these
biases in some simple probit models,

1t is important to recognize that the Hurwiez type hias may be seriaus in any dynamic maodel
estimated using a short time series.
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f are fixed parameters, ¢, are IN(0,67), and [p| < L. #, is thus stationary and
ergodic. If we let E; represent the expectation of a random variable taken over
the individuals for a fixed time period, the above ensures that E¢, =0 and we
assume that Ee, f, = 0.

Rearranging (3) and (4) gives

(5) Y = JG(I - P) Tyt 2 -8Jr'(xr_';'r - px;_‘;‘r—l) +f:(l - ,0} + €.
K

Concentrating our exposition on the lagged dependent variable model (2), the
standard estimation procedure is to start by eliminating the fixed effects f.. This
may be done in any number of ways but the standard technique is to subtract the
time mean of (2) from {2) itself to yield

(6) y:’: _)’:- = p(yit—l _yi- - I} + 2 -Gj(xijr - xr'j" ) + (El-, - er'-)
g

where for any variable z,, z, = (1/T)YS7_ 2, and z;, _, =(1/ T4z, Tt is
clear that OLS estimates based on (6) will be biased even if N, the number of
individuals, goes to infinity. This arises because in these circumstances the
correlation between y,_, and ¢ , for example, does not go to zero. The
remainder of the paper is devoted to an analysis of these biases and is set out as
follows. In the next section we shall compute the bias as N — oo in the model
with no exogenous variables and we shall then look at the effect of including
exogenous variables on these results. In subsequent sections we compare our
analytical computations with some of the extensive Monte-Carlo results pre-
sented in Nerlove [12, 13] and Maddala [9].

[. BIASES IN AUTOREGRESSIVE MODEL WITH FIXED EFFECTS

If we remove the exogenous variables from (6), we have
D Ve =0 V) (a— €y =1 mt=1...T)

Note that this equation follows from both the lagged dependent variable and the
residual autoregression model. In order to estimate p we have a number of
options. The standard method is to use OLS on (7) pooling all the cross-sections.
It is perfectly legitimate, however, to use directly only one cross-section in
estimating (7) although the data on all the others have, of course, already been
used to compute the time means. If we use the rth cross-section we may define an
OLS esumate

N N
(8) -6: = 2 (yit'—l _yi- —|)(J’u _J’s- )/ _gl(yi!—l _.yr'- —1)2'

i=]

We shall now compute the asymptotic bias or inconsistency by taking probability
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limits as N — ¢. Thus we have, using (7),

pli‘mN—vml/NZJ?Ll(yir—l I —I)(er'r - €r‘-)

&) plim 5, = p + :

N pliny o [/ N3 (Yot = ¥i - |)2
or
{10 plim (5, — p) = A4,/ B,, say.

N

To avoid continual use of more complicated terminology we shall, in future,
generally refer to anything of the form plim,_, {8, — #} as a bias. Since ¢, are
random drawings from a normal distribution when ¢ s fixed we can replace’
plims as N = o0 by expectations across i, E,, and thus obtain

A: = Ea'(yir—l - yi- —1}(61'1 £ )
or
(l l) At =~ ELyi.r-— €. E:)’x- - Ieir + EL})!" ,_.|£". 3
noting that £y, _ e, = 0. Before proceeding it is worth pointing out that station-

arity implies the following result. Removing the exogenous variables and time
effects, (2) implies

(12) Yu=(B+f)/(1—p)+ Zopfq-{_j-
=

Then {11) and (12) imply

(i85 o5

where we have used the fact that Ee, = Eef =0. Noting that Ec) = o]
independent of ¢, we have after some manipulation

AR Gl 4 (l—pr_']+f§{ !

A=~ 7 T, T 1-p T

where the three terms correspond to those in the previous section. Collecting
terms then yields

— 03 t—1 - l ([ _'OT)
(13) A[——m{l‘—p - P +?W]

7Our analysis of the bias does nat depend on the normality of ¢;. So lang as the ¢, are identically
and independently distributed far each 1, then the results will go through.
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Proceeding to the denominator of the bias, B,, we have, using (12),

. 1 r o= g
Er'( 2 pjer'r —f=1 - ? 2 2 pjer's—_;'—l)
4=0 s=1 j=40

- E{.(E:Opxqw__l)z— % ( > ple, J_,)( i § pfe!._\__j_l)

=1 j=0
1 T e . 2
_EI( 2 2 pjé.r'.r—j—l)
=1 j=0

a? 2a? 1 —p! (l—pT_’)
1—p? T(1-p) | 1-p I=p
: 2001 =p7
L o =r)
T(l - p) T(1—p?)
where again the three terms in the final expression coarrespond to those in the
previous line. Collecting terms and using (13) we obtain

14 B= % (1_Llyy P 4
() F_l—pz( T) l—pz IS

The final value for the bias is thus given by

1 +p -1 T-
l_ I _ r
T—l( £ e

. 2
(15) pl.m@,—p)=[ P -

+

u)]l

% (1-0) j
ar

a6 plim(3 —0)= —p—

2p =1 _ _T-r
X[“m{"" ¢

_ T
= {l_pr_l_pHJrlT (ll —pp)]
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The first of these expansions is computationally simpler but the second reveals
clearly that the inconsistency 18 O(1/T). There are a number of interesting
points about this bias. First, if p >0, 1t 1s invariably negative since A, < 0.
Second, the bias depends on r and hence varies with the cross-section which is
used to generate the estimate, Indeed, (15) clearly reveals that the bias will be
smaller if we use cross-sections at the ends of the sample period and it will be
largest if we use the muddle one. More relevant for practical purposes, however, is
the bias if we generate our estimate, g, using the whole sample. Thus we have

T N r N
p‘\ = Zl 2[ (_r")p'f __r")!'- —I)(yr'.r _yr'- )/ 2l _El(yr'r—l __:’)1'- —I)2
and in our stapdard notaton the bias is given by
T T

plim (6 —p)= > A,/ X B,

Moo r=1\ =1
which yields

2p

(7 plim(ﬁ—p)=[ -
Moo l—p

l+p(l_L(l_pT))]_l
T—1 T (1-p)

—(1+P)[l_ | (l—pr)}

ar

(18)  plim @ —p)=

N-sec T - l T | - o
I-oT) 1)
4 1 — 2—13 1 — L _( e )
(1—pT -1 T l=p
Furthermore, for reasonably large values of T we have the simple approximation
S —(1+0)
(19 El_lf?o(p py== T-1 -
On the other hand for small values of T we have
—{l+
plim (4 — p) = u for T =12,
MN—ao 2
—(2+ o}l +
_Derete s

with the latter confirming the result in Chamberlin [3, p. 228). These results are
of considerable interest. Apart from the fact that the bias is always negative if
p >0, we can see how large it is if T is small. Even with T = 10, which is the
order of magnitude of most sets of panel data, if p = 0.5 then the bias is - (.167
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which can hardly be ignored. Furthermore, the bias does not go to zero as p goes
to zero. However, these biases are not as severe as the standard Hurwicz biases
associated with first-order autoregressive processes with a constant term. In this
case, at least to order 1/ 7T, the bias is — (1l + 3p)}/T — | which is larger than
those considered above. This approximation and a large number of related
results may be found in Mariott and Pope [10] and Kendall [7]. The standard
Hurwicz bias differs from that given in (17) basically because if we let A
=S (Juct — Vi Ne, — €.} and B=T3 (y,_, — yi. )%, the Hurwicz bias in
the standard regression {with one value of ) is given by E(A/8). We, of course,
are computing the bias as N — oo and are thus considering E(A)/ E(B) where
expectations are zll taken across i. These expressions are related in the sense that
the approximation to the standard Hurwicz bias ta order T~ ' is given by

_ E(4) cov(AB) var(8)
E(/B) - E(B)[ T EEB) | E(B)

which yields the formula cited above. It is, of course, the second and third terms
which make the standard bias bigger. Nevertheless it usually troubles us less
because the typical time series is very much longer than typical panel. Further-
more, when we introduce exogenous variables the situation gets worse as we shall
see in the next sectuon.

2. THE INCLUSION OF EXOGENOUS VARIABLES

In this section we shall concentrate on model (2) with the lagged endogenous
variable. If we define the following matrices

Fo=[da—y.]s N xlvector,
= Pu-r — Viooi]s N X D vector,
X =[xg, - X ], N » J maitrix,
— e,,], N x ] vector,

b= Bj], J x| vector,
(6) may then be written in deviation form as
Q0)  Ji=ef_ +Xb+E

where we have introduced J exogenous variables. To obtain the most efficient
estimates we may now stack these equations over the T time periods to obtain

My

j)'l ﬁo ){_I
2 Y X,
(21) =0l o D

™
AL

b+

]
~
=
i
|
>
3
5
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ar
(22)  P=ef_,+ Xb+¢&

again in obwvious notation. If 4, b are the OLS estimates, using standard
procedures we abtain

(23) b—p=(FoMp_\)" 'V ME
24y B-b=—(X'X)y 'XF_(b—p)+(X'X) 'Xe,
where M = [ — X(X’X)™'X". Taking plims as N> o0 and noting that

i 1 1N £ = 1 .L T
plim g J= ME= plim g - of

since X 18 exogenous, we have

: - H l et} ~ -t - fodd -
(25) pllm(p—p)=(ﬁhm Wy_lMy_l) plim ﬁ)’—lf

N—ron —+ o N—oo

and
(26) plim (6 —b) = — plim [(X"X) ™' X5, ] plim (5 - p).
N—en Moon N
Note first from our previous analysis that we have already calculated
plim (1 /NT)y_ € and this is given by

@y plim g = kS A= (1 ‘ (l_pr))

e NT Y- T T2 T —g) T 1-0 |
This result remains unaltered by the introduction of exogenous variables since
their incorporation into equation (12) will have no effect given they are uncorre-
lated with the error term. When p is positive we may derive the direction of the
biases. Since A, is negative, plim(p — p) must be negative and will indeed be
larger (in absolute value) than if the exogenous variables are omitted since the
denominator of the expression in (25} is reduced by the inclusion of M. The bias
on b depends on the relationship between the exogenous variables and §_ . If an
exogenous variable is positively related {in the regression sense) to y _ |, then (26)
indicates that its coefficient will be upward biased and vice-versa.

Having derived all these explicit results for the inconsistencies generated in the
dynamic fixed effects model it is obviously worth comparing them with what we
know from Monte Carlo experiments. Nerlove [12] obtains a number of results
on fixed effect first-order autoregressive models with no exogenous variables. He
concludes on page 58 that the bias in p is uniformly negative (he only considers
p > 0) as we would expect. Furthermore, his actual estimates provide most
compelling confirmation of the usefulness of our results. Using a sample size of
T =10, N = 25, he computes a large number of estimates of 5 corresponding to
true values of p equal to 0.0, 0.1, 0.5, and 0.9. He does this for a large number of
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different values of the variance of f relative to that of ¢,, 2 number which does
not influence the asymptotic bias and indeed, as he himself points out, does not
affect his g estimates except when p=0.9. For p =00, 0.1, 0.5 the average
Nerlove Monte Carlo estimates of p reported mm Table Cl are —0.10083,
—0.01115, and 0.33354 respectively.® The corresponding 4’s given by equation
{17y are —0.10000, —0.01108, and 0.33779. They are thus more or less exact even
though they are only asymptaotic in ¥ and Nerlave has & = 25. The results for
g = 0.9 are not quite so clear cut. Equation (17) gives p = 0.65677 whereas the
Monte Carlo results only yield this value if the variance of f, is not large relative
to the total error variance. Thus the average Maonte Carlo estimate of 5 is 0.657 if
we only consider those experiments where the variance of f is less than one third
of the total—otherwise the Monte Carlo estimates become considerably higher
and our asymptotic result 18 no longer accurate.

Turning to the introduction of exogenous variables we may note an experiment
by Maddala for p = 0.7 where he again has & = 25 and although he claims to
have T =10 1t appears that he only generates ten values of the dependent
variable for each i, which would imply 7 = 9 in our notation given the lagged
value on the right-hand side. When there is no exegenous variable he generates
§=0475 (equation {17} yields p =0.4805) whereas the introduction of an
exogenous variable with a true coefficient equal to 0.5 reduces § to 0.3178 and
generates an estimate of § which 1s strongly upward biased as we might expect
from (26).

SUMMARY

We have presented analytical expressions for the asymptotic biases in first-
order autoregressive models estimated by OLS using panel data and including
individual fixed effects. These asymptotic biases are shown to be both large and
to coincide almost exactly with the estimates provided by the Monte Carlo
studies of Nerlove {1967) and Maddala (1971).

London School of Economics

Manuscript recerved fanuary, 1980; revision received August, 1980,

fWhen ¢ = 0.0, Nerlave reparts a sequence of o's for various different vatues of var( £}/(total error
variancel. All the numbers in this sequence bar one lie between —0.086 and —0.115 The odd man
aut 15 —0.010 and this hag heen omitted in computing the average presented in the text on the
grounds that it is probably a typographical error.
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